The neurobiology of dreaming

What are dreams, and why do we have them? People have probably been asking these questions since the dawn of reflective thought, but it wasn’t until the 1950s that scientists first identified neurophysiological correlates of dreaming. A classic paper by Aserinsky and Kleitman1 in 1953 marked the discovery of what we now refer to as Rapid Eye Movement (REM) sleep (Figure 1). Together with non-Rapid Eye Movement (NREM) sleep, REM sleep if one of the two major sleep states that humans and other mammals pass through multiple times during each sleep episode. REM sleep is the state associated with the vivid, hallucinatory dream experiences that we (sometimes) remember after waking.



[Throwback Thursday] Nothing to fear but fear itself

Late one night, a woman strolls through an urban park, and a belligerent man yells at her to come to the bench where he is sitting. The woman casually walks over to the man, who puts a knife to her throat. In a gentle voice she tells him, “If you’re going to kill me, you’re gonna have to go through my God’s angels first.” The man is so freaked out by this statement and the women’s calm demeanor that he immediately lets her go. The next day, she takes another solitary walk through the park, as if nothing had happened.1 (more…)

Science, red in tooth and claw?

Science is competitive—very competitive. We compete with our scientific peers for funding. Departments and institutions compete for the best talent. There can even be competition between colleagues within the same lab. The currency of success is high-impact publications. Principal Investigators need to publish as senior author in order to obtain funding and secure tenure, and students and postdocs need first author (ideally first first author) publications in order to some day receive a tenure-track position. Given that competition is both intense and widespread at every level of professional science, it is a subject worth giving serious thought.


Oxytocin: sculpting the maternal brain

Humans have a lot in common with prairie voles—at least when it comes to mating. Unlike the vast majority of mammalian species, we often enter into monogamous pair bonds. A crucial molecule involved in determining this mating strategy is oxytocin. Popularly known as the “cuddle hormone,” oxytocin is a neuropeptide that plays an ancient role in orchestrating social and reproductive behaviors [1], and frequently makes headlines because of its ability to influence a variety of interesting behaviors [2]. Until recently, however, it has remained unclear how and where oxytocin is exerting its effects in the brain. Using modern experimental tools, neuroscientists are beginning to develop a more mechanistic understanding of how oxytocin affects specific circuits in the brain.

Chemical structure of oxytocin.

Chemical structure of oxytocin.


  • Recent Posts

  • Categories

  • Meta

  • Advertisements